Symmetry And Group

Download Analyse Harmonique sur les Groupes de Lie by P. Eymard, J. Faraut, G. Schiffmann, R. Takahashi PDF

By P. Eymard, J. Faraut, G. Schiffmann, R. Takahashi

Show description

Read or Download Analyse Harmonique sur les Groupes de Lie PDF

Similar symmetry and group books

20th Fighter Group

The 20 th Fighter crew joined the eighth Air strength Command in Dec of '43, flying the P-38 in lengthy diversity bomber escort position. the crowd later switched over to the P-51 in July of '44. the crowd destroyed a complete of 449 enemy airplane in the course of its wrestle travel. Over one hundred fifty pictures, eight pages of colour, eighty pages.

Multiplizieren von Quantengruppen

Inhaltsangabe:Einleitung: Quantengruppen als quantisierte Universelle Einhüllende von Lie-Algebren sind Gegenstand der vorliegenden Arbeit. Sie bietet eine Einführung in die Thematik, setzt lediglich Grundkenntnisse der Darstellungstheorie Halbeinfacher Lie-Algebren voraus, wie sie etwa bei Humpfreys, Jacobsen, Serre oder Bourbaki vermittelt werden, und ordnet die Darstellungstheorie der Quantengruppen in die Physik konformer Feldtheorien ein.

Extra resources for Analyse Harmonique sur les Groupes de Lie

Example text

Math. Phys. : Weyl’s character formula for non-connected Lie groups and orbital theory for twisted affine Lie algebras. J. Funct. Anal.

4 The root system A0 λ+ρwc ,k+h∨ (H0 ) Fwc (H0 ) . 5. We have to distinguish two cases. First, let us suppose that for any simple root α ∈ , the roots α and σc (α) are not connected in the Dynkin diagram of . In this case, one can easily show that σc (eα ) = eσc (α) , so that s(α) = 1 for all real roots α ∈ re . For any root α ∈ let us denote by ασc its restriction to the subspace hσc ⊂ h. Then the set {mα ασc | α ∈ re } is the set of real roots of an affine root system which we will denote by σc .

The basic levels of non-simply connected Lie groups have been calculated in [T]. See also [FSS] for a list of the root systems σ for general automorphisms σ of the Dynkin diagram of . The notation for affine root systems in the table below is the same as in [K]. G SLn c G = G/ c (1) n ≥ 2 Zr Spin2n+1 n ≥ 2 Z2 kb SO2n+1 An/r−1 if r = n n(n−1) k r2 ∅ if r = n ∈Z 1 Sp4n n ≥ 1 Z2 1 Sp4n+2 n ≥ 1 Z2 2 Spin4n n ≥ 2 Z02 Spin4n n ≥ 2 Z± 2 SO4n σc (1) smallest k with An−1 1 1 if n even (1) Bn (1) C2n (1) C2n+1 (1) D2n (1) D2n (2) A2(n−1) (2) A2n (1) Cn (1) C2n−2 (1) Bn 2 if n odd (1) (1) (1) (1) Spin4n+2 n ≥ 2 Z2 SO4n+2 1 D2n+1 C2n−1 Spin4n+2 n ≥ 2 Z4 PSO4n+2 4 D2n+1 Cn (1) G2 (1) F4 E6 Z3 3 E6 E7 Z2 2 E7 (1) (1) 580 R.

Download PDF sample

Rated 4.99 of 5 – based on 41 votes